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SchroK dinger equation with imaginary potential
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Abstract

We numerically investigate the solution of the SchroK dinger equation in a one-dimensional system with gain. The gain is
introduced by adding a positive imaginary potential in the system. We "nd that the time-independent solution gives that
the ampli"cation suppresses wave transmission at large gain. Solutions from the time-dependent equation clearly
demonstrate that when gain is above a threshold value, the amplitude of the transmitted wave increases exponentially
with time. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently the propagation of classical wave in
gain media has been studied [1}10]. With en-
hanced optical paths from multiple scattering, one
would expect the transmission coe$cient in dis-
ordered systems to be also enhanced with gain.
Surprisingly transfer matrix calculation [1,2] based
on time-independent wave equations showed that
for large systems the wave propagation is sup-
pressed with gain, leading to smaller transmission
[3,4] of waves as if the system was absorbing. Thus,
it was generally believed that the paradoxical phe-
nomenon may indicate enhanced localization due
to interference of coherently ampli"ed multiple re-
#ected waves [1}8]. To fully understand the origin
of this apparent non-intuitive suppression of trans-
mission, Jiang et al. [10] examined the validity of
the solutions derived from the time-independent
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wave equations which have been commonly em-
ployed in describing the wave propagation in active
media. Linearized time-independent wave equa-
tions with complex dielectric constant have been
successfully applied to "nd lasing modes by locat-
ing the poles in the complex frequency plane [11]
and to investigate the spontaneous emission noise
below the lasing threshold in distributed feedback
semiconductor lasers [12]. Nevertheless, these suc-
cesses cannot be extended in general to actual las-
ing phenomena since a steady output assumption
may lead to unphysical solution. Jiang et al.
pointed out that any preassumed time-independent
wave solutions are insu$cient to interpret wave
propagation in gain media. When the gain is large
enough or the system is long enough to exceed the
critical value, the time-independent solution even
gives a wrong picture. They also emphasized that
the apparent suppression is not due to the disorder
or other forms of localization. With su$cient gain,
wave should be able to overcome losses from back-
scattering and propagate through the system with
increased intensity.
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In this paper we want to check whether a similar
behavior can be seen in a quantum system. We
study the solution of the SchroK dinger equation with
a complex potential as a mathematical model. We
interpret the positive imaginary potential as gain
since the probability density of the system is in-
creasing with time. By solving the time-indepen-
dent SchroK dinger equation we indeed "nd that the
transmission coe$cient decreases even in the pres-
ence of gain. The numerical simulations show that
the probability density has the same behavior as
the classical EM wave.

Section 2 describes our model. We introduce the
gain by adding a positive constant imaginary po-
tential to the SchroK dinger equation. Section 3 gives
a summary of our simulation results. It shows how
the time-independent solution is broken down. Sec-
tion 4 is conclusion.

2. Model

In a one-dimensional system with complex square
well potential, the time-dependent SchroK dinger
equation can be written as

!

��
2m

R�
Rx�

�(x, t)#<(x)�(x, t)"i�
R
Rt�(x, t), (1)

where <(x)"0 for x(0 or x'¸ and <(x)"
!<

�
#i<

�
otherwise, where <

�
'0.

For a time-independent solution, the above
equation is equivalent to time-independent Max-
well wave equation
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is de"ned in between 0 and ¸.

Note the Hamiltonian in our SchroK dinger equa-
tion is non-Hermitian, the wave function cannot be
normalized and the probability is not a local vari-
able, therefore (d/dt)��

��
��(x, t)�� d�xO0. There

are a couple of papers which are dealing with non-
Hermitian Quantum Mechanics [13,14], but for
the time being we just perform numerical simula-
tion for time-dependent solution on our model. We
use a well-developed "nite di!erence time domain
(FDTD) technique [15] to simulate the time evolu-

tion for the SchroK dinger equation. The evolution of
the wave function at a later time is expressed by

����"e����	�
����. (3)

We use the following approximation to compute
the evolution operator [16]:
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In Hermitian case, i.e. if <
�
"0, the norm of the

right-hand side expression is 1, thus it is a good
approximation since it can automatically satisfy
both the stability requirement imposed on discre-
tion and wave function and normalization of the
wave function. Later in our numerical calculation,
the <

�
is some non-zero values due to the introduc-

tion of the gain. The wave source we used in our
simulation is
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where t
�

and t
�

are two constants which de"ne
a gradually increased modulation on wave form.
t
�

indicates the moment when the wave source
begins to give o! steady output. t

�
indicates the

width of modulation, so it de"nes how smooth the
modulation is. The reason to add a gradually in-
creased modulating factor is to allow a smooth
transition to the steady state and to maintain the
stability of the simulation.

In our computation, a complex potential with
a width ¸"0.2 �m is used. Several positive imagi-
nary potentials were chosen and the corresponding
transmission coe$cients were calculated. The Liao
absorption boundary condition [15] at the far ends
of the system leads was used to avoid mixing of the
transmitted and re#ected waves.

3. Results

First we present the time-independent numerical
results. In Fig. 1 we plot the logarithm of the
transmission coe$cient versus the length ¸ of
the width of the complex potential. In this case
<

�
"0.5411 eV, <

�
"0.00449 eV and the incident

energy E"0.37628 eV. Notice that the "gure is
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Fig. 1. NaiGve time-independent solution for SchroK dinger equa-
tion, ln(¹) versus ¸. Note the drop if potential length is greater
than ¸

�
, which is unphysical. a and b are two asymptotic lines in

the two limitation directions. (a) ¸P!R, (b) ¸P#R. The
parameters used, <

�
"0.5441 eV, <

�
"0.00449 eV, incident

energy E"0.37628 eV.

Fig. 2. Another view of the time-independent solution for
SchroK dinger equation, ln(¹) versus gain <

�
. This "gure clearly

shows the critical gain at a constant system length (¸"0.2 �m).
Notice the unphysical drop after the critical gain<�

�
. The critical

gain is de"ned as the extreme point in this graph.

exactly the same as that of Fig. 1 of Ref. [10]. In
this electronic case too for large enough ¸, ¹ drops
despite the fact that we have gain. The solid lines in
Fig. 1 give the asymptotic lines for ln(¹) for positive
and negative large ¸. For negative large ¸,
ln(¹)"2k�
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From the intersection of these two asymptotic lines
we can evaluate the critical length ¸

�
("�

�
(l
�
#l

�
)),

above which the time-independent solution is not
valid.

In Fig. 2, we plot the logarithm of the transmis-
sion coe$cient ln(¹) versus the imaginary part of
the potential <

�
, for a constant width ¸"0.2 �m

of the complex potential. The critical value of the
gain <�

�
is given to be approximately equal to

0.0032 eV. Notice again that for large <
�
, ln(¹)

decrease despite the fact the gain (<
�
) increases. We

have again that gain e!ectively becomes loss at
large gains. Remember, that the system is homo-
geneous, thus disorder is de"nitely not responsible
for this strange behavior.

We can get a better understanding of how the
wave function evolves inside the potential well, by
analytically solving the time-dependent SchroK dinger
equation with a complex potential. The equation
can be written as
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Separation of �(x, t)"X(x)¹(t) gives the following
equation:
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The solution of Eq. (7) suggests that the time de-
pendency behaves as [e�� �	�]e����	�. The spatial part
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Fig. 3. Transmission versus <
�
. The parameters we use are

¸"0.2 �m, <
�
"0.5411 eV. The `1st outputa means the out-

put of the "rst transmitted wave through the potential well. `2nd
outputa means the 2nd output, i.e. after the wave's "rst round
trip inside the well (due to the re#ection on potential bound-
aries), and so on. See the steps in curve a in Fig. 4.

Fig. 4. Transmission versus time. The time step is 4.5�10��� s.
The parameters we use are: ¸"0.2 �m, <

�
"0.5411 eV, inci-

dent energy E"0.37642. The critical gain<�
�
K0.00292 eV. The

slope of the ln��� versus t corresponding to<
�
/�. So we can have

the value of <
�
from the numerical simulation data. (a) Above

the critical gain, <
�
"0.004791 eV, the calculated value of

<
�
"0.004703 eV. (b) Below the critical gain,<

�
"0.001055 eV.

The wave function reaches a steady value. (c) No gain,
<

�
"0 eV.

Fig. 5. Transmission versus time. The slope of the lines is approx-
imately equal to <

�
/� (<

�
"0.004791 eV versus <��������	


�
"

0.004703 eV), which implies that �Je�� �	� (inside and outside).
The letters beside the lines correspond to the data collecting
points shown above.

is a normal wave equation. In addition to the nor-
malized factor e����	�, we have an exponentially
increased factor e�� �	�, which cannot be captured by
the time-independent equation. Ecomomou has
pointed out that the time increase comes from the
discrete spectra with imaginary energy eigenvalues
[17]. The sum of all those discrete partial waves
contribute the exponential time increase of the
wave function.

The numerical solution of the time-dependent
SchroK dinger equation shows that below or above
the critical gain the time-dependent behavior of
wave function of each round trip inside the poten-
tial well are di!erent. Below the critical gain, the
increase of the wave function � after each round
trip is getting smaller and smaller and eventually
the output of the transmission can reach a steady-
state solution. On the other hand, when the gain
<

�
is above the critical gain, the increase of � after

each round trip is getting larger with time and
causes � to have an exponential increase. This
behavior is clearly seen in Fig. 3. Notice that for
<

�
larger than the critical gain, � increases expo-

nentially with time. This is shown in Fig. 4, where
the ln ��(t)� versus t is plotted for cases with gain
both above and below the critical gain.

From Fig. 4 we have calculated the slope of the
ln(���) with respect to time, and we found indeed
that the transmitted wave function increases expo-
nentially as e�� �	� when the gain is above the critical
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Fig. 6. Snapshots of the amplitude of the wave function for
di!erent <

�
(at 3 time points. The time intervals are same

between the points). The potential well is located at 3 �m&

3.2 �m. (A) Gain is above the critical value (<
�
"0.004791 eV).

(B) Around the critical value (<
�
"0.00292 eV). (C) Below the

critical value (<
�
"0.001055 eV).

value. When the gain is below the critical value, the
transmitted wave reaches a constant value (see line
b in Fig. 4). From Fig. 4, we can see the step-
like behavior of the wave function, which indicates
the di!erent re#ections at the boundaries of the
complex potential function.

Our numerical results also shows that the wave
function increases with time exponentially as
e�� �	� for both inside the potential well and outside
the well. This is clearly shown in Fig. 5, where the
ln(��(t)�) versus t is plotted.

The overall distribution of the wave function
along the system is also calculated. Fig. 6 shows if
the gain is below the critical value, the output wave
function is stable outside the potential well along
the propagation direction. If the gain is above the
critical value, the output wave function decreases
exponentially outside the potential wall (Je���).
The decrease is caused by the continuity condi-
tion of wave function on the complex potential
boundary.

4. Conclusion

In summary, we have examined the solution of
SchroK dinger equation with gain. The computer
simulation results are quite di!erent from those
obtained from time-independent equation using
transfer matrix method. The di!erence is due to the
wrong steady-output assumptionsmade by transfer
matrix methods.
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